If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5c^2-35c=32
We move all terms to the left:
5c^2-35c-(32)=0
a = 5; b = -35; c = -32;
Δ = b2-4ac
Δ = -352-4·5·(-32)
Δ = 1865
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-\sqrt{1865}}{2*5}=\frac{35-\sqrt{1865}}{10} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+\sqrt{1865}}{2*5}=\frac{35+\sqrt{1865}}{10} $
| 1-7c-13=-c-4-8c | | 5x-3=-x+6 | | 9y+15=4y | | 3/(2x)=(3x)/8 | | x^2-14x+70=0 | | 36-2v=(v^2)-7v | | 5=2+z | | 7t2-7t-392=0 | | ∠B=3x+13 | | 36-2v=v^2-7v | | 3(x+x+2)-18=4x+1 | | 11(3-5n)-7(5-4n)=0 | | (X+76)+x=180 | | a=12-2 | | 15=11+2m | | 1/7s=50 | | -4(w+3)-3w=2(w+3 | | 13x+5+2x=x+10 | | 3d-18=6d | | -8x-12=2.8 | | 3=7−2d | | s/7=50 | | 2^x=0.33 | | 3^x=0.33 | | 7a-32a-60=0 | | 83 a=3 | | -52=-s | | 4=8−2z | | 2x+x+(2x-100)=1200 | | 2p+1/2=46 | | -4=-4+v | | 9/k=27 |